

Medizinische Fakultät Mannheim der Universität Heidelberg

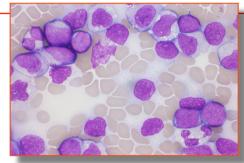
Universitätsklinikum Mannheim

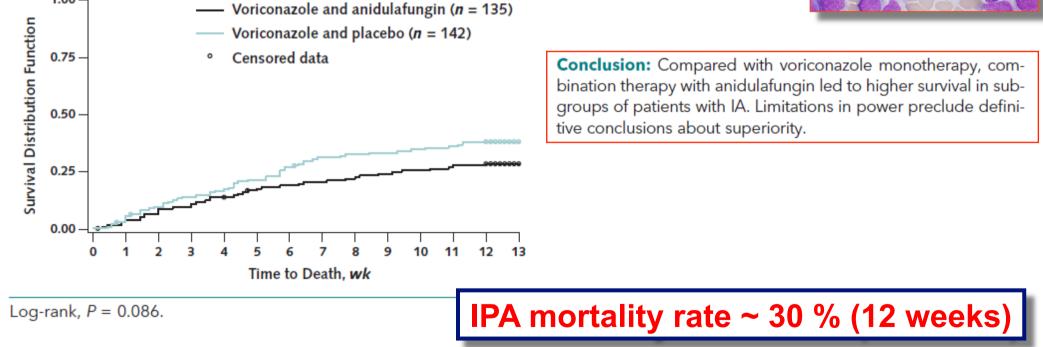
Diagnosis of invasive fungal infections in hematological patients –

the IPA biomarker combination approach

Infektiologie Update 2016 25. Jahrestagung der PEG, Rostock

D. Buchheidt


Dept. of Internal Medicine, Mannheim University Hospital


Combination Antifungal Therapy for Invasive Aspergillosis A Randomized Trial

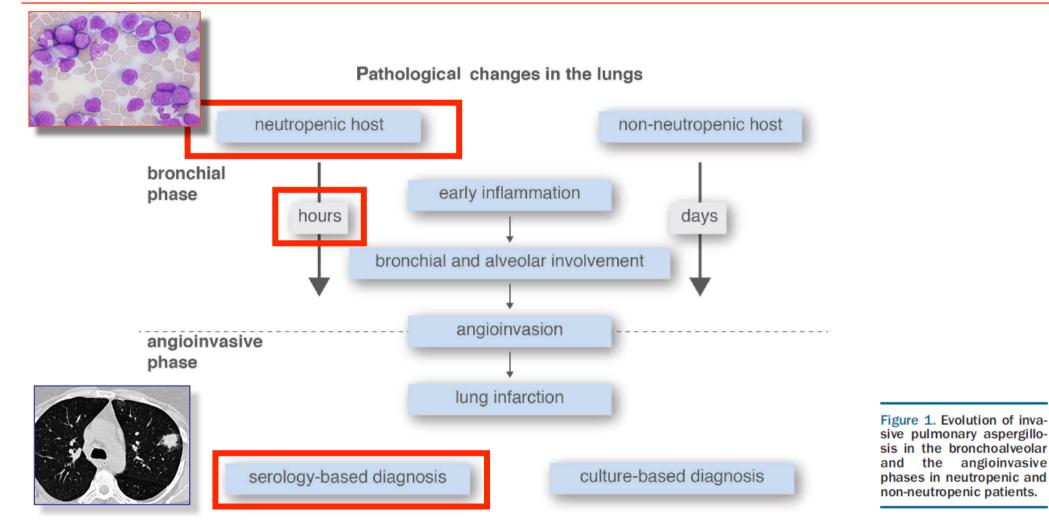
Kieren A. Marr, MD; Haran T. Schlamm, MD; Raoul Herbrecht, MD; Scott T. Rottinghaus, MD; Eric J. Bow, MD, MSc; Oliver A. Cornely, MD; Werner J. Heinz, MD; Shyla Jagannatha, PhD; Liang Piu Koh, MBBS; Dimitrios P. Kontoyiannis, MD; Dong-Gun Lee, MD; Marcio Nucci, MD; Peter G. Pappas, MD; Monica A. Slavin, MD; Flavio Queiroz-Telles, MD, PhD; Dominik Selleslag, MD; Thomas J. Walsh, MD; John R. Wingard, MD; and Johan A. Maertens, MD, PhD

Figure 2. Cumulative incidence of death in the modified intention-to-treat population.

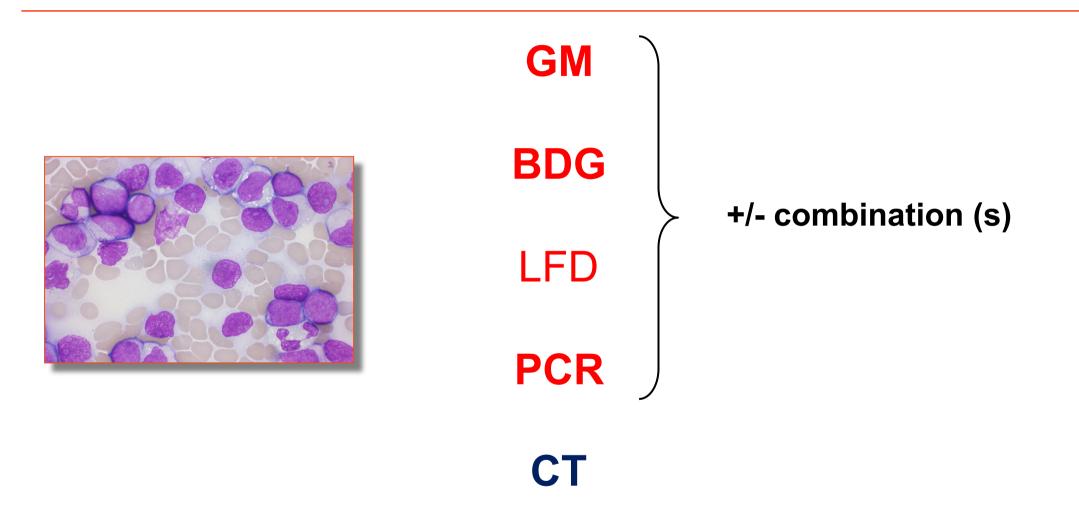
1.00

Ann Intern Med 162: 81-89 (2015)

Isavuconazole versus voriconazole for primary treatment of invasive mould disease caused by *Aspergillus* and other filamentous fungi (SECURE): a phase 3, randomised-controlled, non-inferiority trial

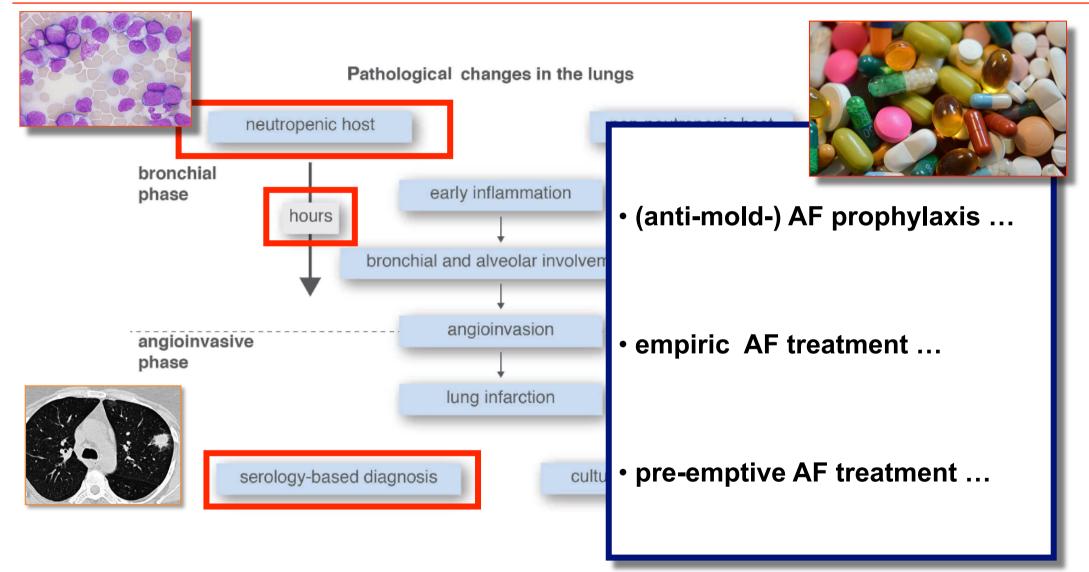

Johan A Maertens, Issam I Raad, Kieren A Marr, Thomas F Patterson, Dimitrios P Kontoyiannis, Oliver A Cornely, Eric J Bow, Galia Rahav, Dionysios Neofytos, Mickael Aoun, John W Baddley, Michael Giladi, Werner J Heinz, Raoul Herbrecht, William Hope, Meinolf Karthaus, Dong-Gun Lee, Olivier Lortholary, Vicki A Morrison, Ilana Oren, Dominik Selleslag, Shmuel Shoham, George R Thompson III, Misun Lee, Rochelle M Maher, Anne-Hortense Schmitt-Hoffmann, Bernhardt Zeiher, Andrew J Ullmann

	lsavuconazole	Voriconazole
Certainty of diagnosis‡		
Proven invasive mould disease	29 (11%)	36 (14%)
Probable invasive mould disease	114 (44%)	93 (36%)
Possible invasive mould disease	88 (34%)	108 (42%)
No invasive mould disease	27 (10%)	21 (8%)
Mycological criteria		
No mycological evidence available§	92 (36%)	113 (44%)
Serum galactomannan positive	91 (35%)	94 (36%)
Non-sterile cytology, direct microscopy, or culture evidence of invasive mould disease	59 (23%)	39 (15%)


	lsavuconazole	Voriconazole
All-cause mortality		
ITT population	258	258
Day 42 all-cause mortality	48 (19%)	52 (20%)
Deaths	45 (17%)	50 (19%)
Unknown survival status†	3 (1%)	2 (1%)
Day 84 all-cause mortality	75 (29%)	80 (31%)
Deaths	72 (28%)	75 (29%)

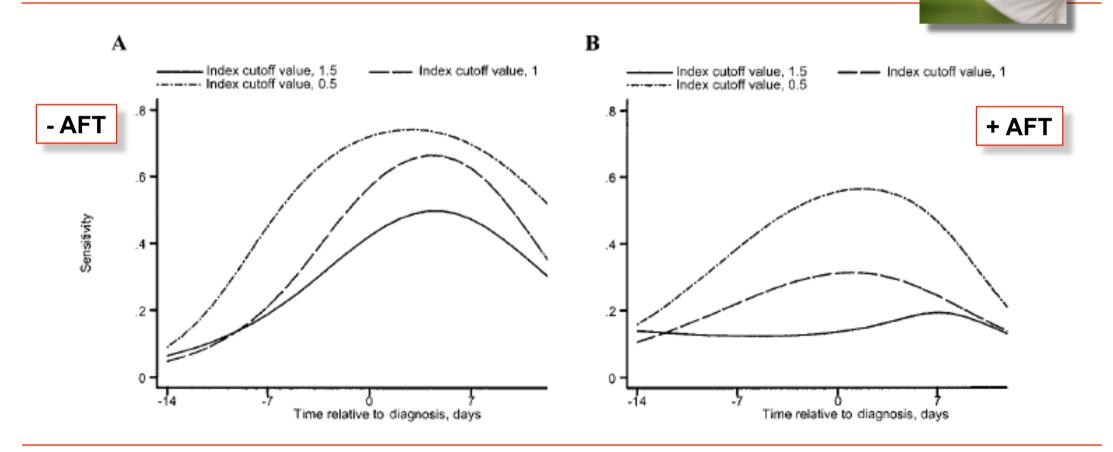
Early diagnosis of invasive pulmonary aspergillosis in hematologic patients: an opportunity to improve the outcome

Marcio Nucci,¹ Simone A. Nouér,¹ Domenico Cappone,^{1,2} and Elias Anaissie³


Surrogate- / biomarkers to "diagnose" IPA

(VOC ?, gliotoxin ?, CT angio ?, PET-CT ?, FunReacT ?, ...)

Early diagnosis of invasive pulmonary aspergillosis in hematologic patients: an opportunity to improve the outcome


Marcio Nucci,¹ Simone A. Nouér,¹ Domenico Cappone,^{1,2} and Elias Anaissie³

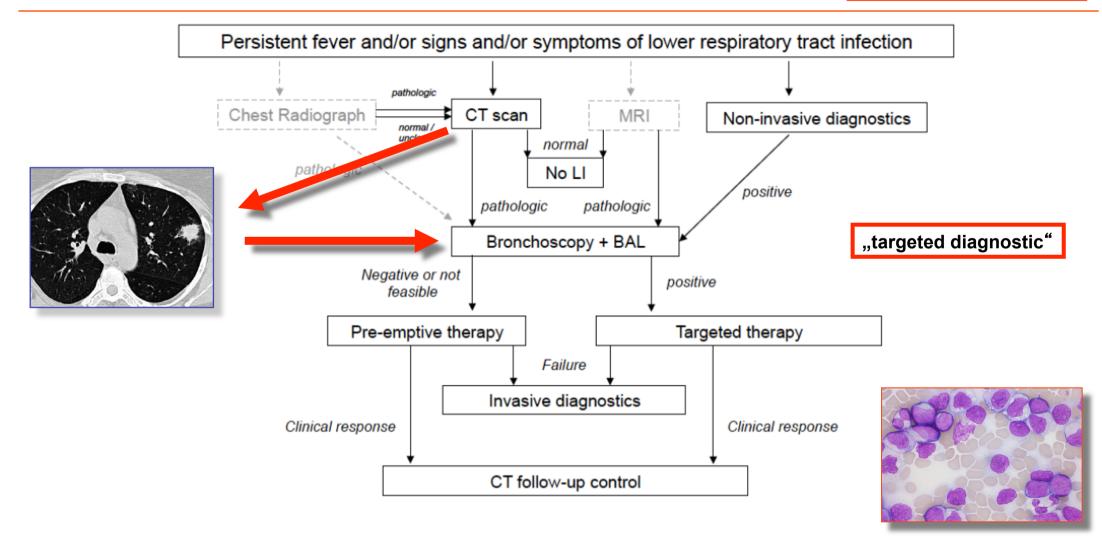
haematologica | 2013; 98(11)

Antifungal Therapy Decreases Sensitivity of the Aspergillus Galactomannan Enzyme Immunoassay

Kieren A. Marr,¹² Michel Laverdiere,³ Anja Gugel,¹ and Wendy Leisenring^{1,2}

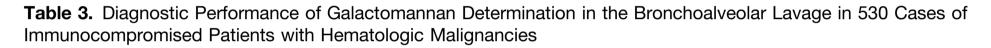
Isavuconazole versus voriconazole for primary treatment of invasive mould disease caused by Aspergillus and other filamentous fungi (SECURE): a phase 3, randomised-controlled, non-inferiority trial

Johan A Maertens, Issam I Raad, Kieren A Marr, Thomas F Patterson, Dimitrios P Kontoyiannis, Oliver A Cornely, Eric J Bow, Galia Rahav, Dionysios Neofytos, Mickael Aoun, John W Baddley, Michael Giladi, Werner J Heinz, Raoul Herbrecht, William Hope, Meinolf Karthaus, Dong-Gun Lee, Olivier Lortholary, Vicki A Morrison, Ilana Oren, Dominik Selleslag, Shmuel Shoham, George R Thompson III, Misun Lee, Rochelle M Maher, Anne-Hortense Schmitt-Hoffmann, Bernhardt Zeiher, Andrew J Ullmann


	Isavuconazole	Voriconazole
Certainty of diagnosis‡		
Proven invasive mould disease	29 (11%)	36 (14%)
Probable invasive mould disease	114 (44%)	93 (36%)
Possible invasive mould disease	88 (34%)	108 (42%)
No invasive mould disease	27 (10%)	21 (8%)
Mycological criteria		
No mycological evidence available§	92 (36%)	113 (44%)
Serum galactomannan positive	91 (35%)	94 (36%)
Non-sterile cytology, direct microscopy, or culture evidence of invasive mould disease	59 (23%)	39 (15%)

Diagnosis and Antimicrobial Therapy of Lung Infiltrates in Febrile Neutropenic Patients (allogeneic SCT excluded) Updated Guidelines of the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Medical Oncology (DGHO)

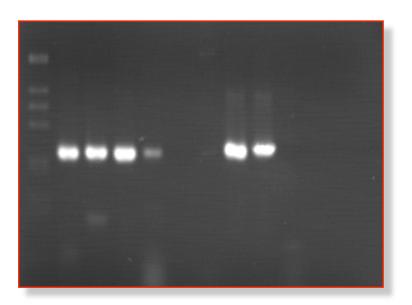
G. Maschmeyer¹, J. Carratalà², D. Buchheidt³, A. Hamprecht⁴, C.P. Heussel⁵, C. Kahl⁶, J. Lorenz⁷, S. Neumann⁸, C. Rieger⁹, M. Ruhnke¹⁰, H. Salwender¹¹, M. Schmidt-Hieber¹², E. Azoulay¹³


Ann Oncol 26(1): 21-33 (2015). Epub 2014 May 15

Galactomannan in Bronchoalveolar Lavage for Diagnosing Invasive Fungal Disease

Kristina Affolter¹, Michael Tamm¹, Kathleen Jahn¹, Jörg Halter², Jakob Passweg², Hans H. Hirsch³, and Daiana Stolz¹

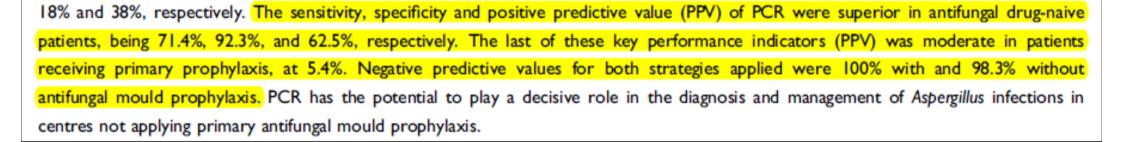
Methods: A total of 568 hematologic cases undergoing diagnostic bronchoscopy because of respiratory symptoms and/or suspected IFD between 2009 and 2013 at a tertiary care center in Switzerland were included in this prospective, observational cohort study.


	Sensitivity	Specificity	PPV	NPV	PLR	NLR
As compared with EORTC/MSG Proven Proven and probable Proven and probable Proven and probable and possible As compared with clinical judgment Receiving empirical antifungal treatment Suspicion of IFD on radiologic studies	0.35 (0.29–0.41) 0.42 (0.34–0.50)	0.71 (0.67–0.75) 0.73 (0.69–0.77) 0.74 (0.70–0.78) 0.75 (0.70–0.80) 0.75 (0.71–0.80) 0.73 (0.68–0.78)	0.02 (0.04–0.06) 0.16 (0.11–0.23) 0.16 (0.10–0.22) 0.52 (0.44–0.60) 0.39 (0.31–0.47) 0.37 (0.30–0.46)	0.99 (0.98–1.0) 0.93 (0.90–2.48) 0.98 (0.96–0.99) 0.60 (0.54–0.65) 0.78 (0.73–0.82) 0.70 (0.65–0.75)	1.72 (0.77–3.88) 1.81 (1.32–2.48) 2.76 (2.14–3.56) 1.40 (1.07–1.82) 1.69 (1.30–2.20) 1.27 (0.97–1.67)	0.70 (0.32–1.57) 0.70 (0.53–0.92) 0.37 (0.21–0.65) 0.87 (0.77–0.97) 0.77 (0.67–0.90) 0.90 (0.79–1.02)

PCR applications

stecting pathogens difficult to cultivate:

1988	HIV
1989	CMV
1989	Toxoplasma gondii
1993	Borrelia burgdorferi
1993	Aspergillus fumigatus


. . .

. . .

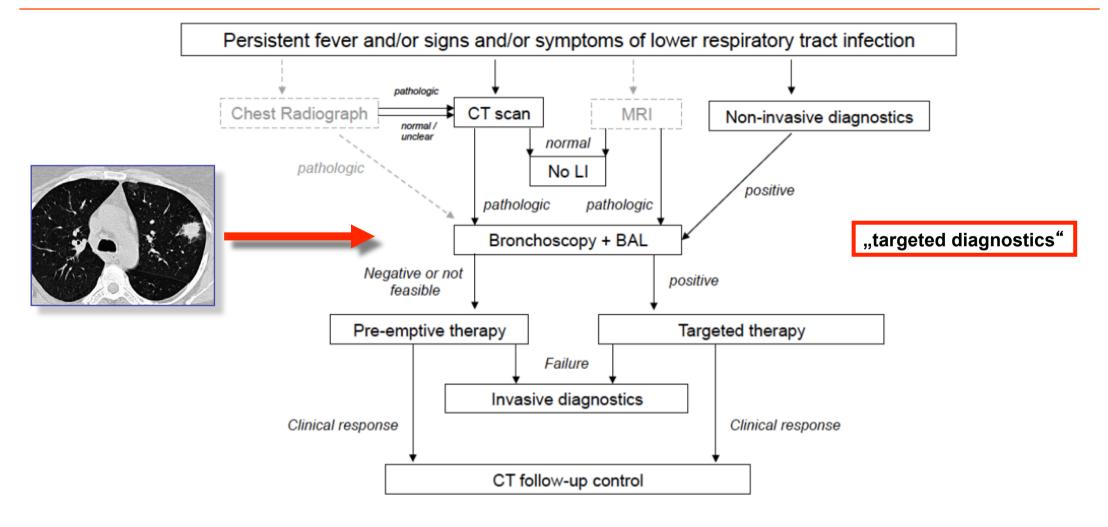
... and diagnosing infectious diseases

Prospective multicentre PCR-based Aspergillus DNA screening in high-risk patients with and without primary antifungal mould prophylaxis

J. Springer¹, M. Lackner², D. Nachbaur³, M. Girschikofsky⁴, B. Risslegger², W. Mutschlechner², J. Fritz⁵, W. J. Heinz¹, H. Einsele¹, A. J. Ullmann¹, J. Löffler¹ and C. Lass-Flörl²

PPV without antifungal (*Aspergillus*-active) prophylaxis 62,5 %, PPV during AFP 5,4%

Clin Microbiol Infect 22(1): 80-86 (2016)



Diagnosis and Antimicrobial Therapy of Lung Infiltrates in Febrile Neutropenic Patients (allogeneic SCT excluded) Updated Guidelines of the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Medical Oncology (DGHO)

G. Maschmeyer¹, J. Carratalà², D. Buchheidt³, A. Hamprecht⁴, C.P. Heussel⁵, C. Kahl⁶, J. Lorenz⁷, S. Neumann⁸, C. Rieger⁹, M. Ruhnke¹⁰, H. Salwender¹¹, M. Schmidt-Hieber¹², E. Azoulay¹³

Ann Oncol 26(1): 21-33 (2015). Epub 2014 May 15

Haematology

European Journal of Haematology 89 (120-127)

ORIGINAL ARTICLE

Diagnosing pulmonary aspergillosis in patients with hematological malignancies: a multicenter prospective evaluation of an *Aspergillus* PCR assay and a galactomannan ELISA in bronchoalveolar lavage samples

Mark Reinwald¹, Birgit Spiess¹, Werner J. Heinz², Jörg J. Vehreschild³, Cornelia Lass-Flörl⁴, Michael Kiehl⁵, Beate Schultheis⁶, Stefan W. Krause⁷, Hans-Heinrich Wolf⁸, Hartmut Bertz⁹, Georg Maschmeyer¹⁰, Wolf-Karsten Hofmann¹, Dieter Buchheidt¹

Utility of bronchoalveolar lavage fluid galactomannan alone or in combination with PCR for the diagnosis of invasive aspergillosis in adult hematology patients: a systematic review and meta-analysis.

Heng SC, Morrissey O, Chen SC, Thursky K, Manser RL, Nation RL, Kong DC, Slavin M.

We conducted a systematic review and meta-analysis of **16 studies involving 783 adults** with hematological malignancies to derive summary estimates of the overall accuracy of BAL-GM for diagnosing IA.

Summary estimates of BAL-GM using an optical density (OD) index cutoff value of 1.5 for proven and probable IA were: sensitivity 0.92 (95% CI = 0.48-0.99), specificity 0.98 (95% CI = 0.78-1.00),

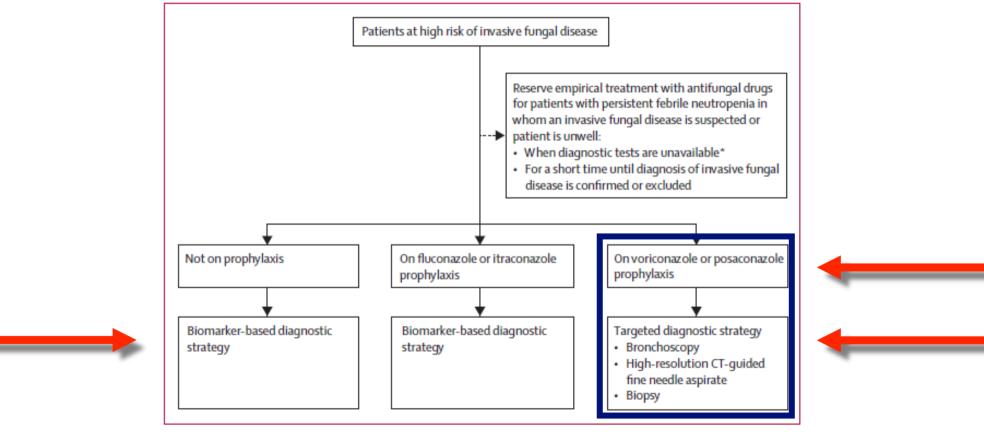
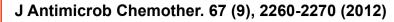
Comparing serum GM and Aspergillus PCR testing on BAL fluid, BAL-GM conferred greater sensitivity, but lower specificity than the serum GM test, and similar specificity as the PCR assay. The use of BAL-GM with serum GM or BAL-PCR tests increased the sensitivity moderately when a positive result was defined by either assay.

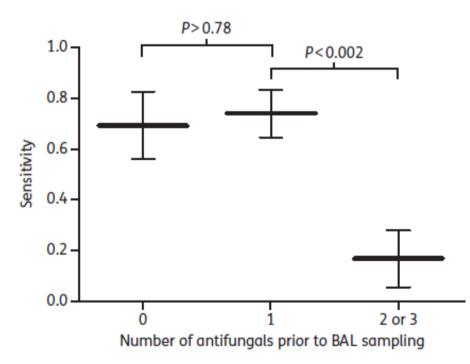
GM quantification in BAL fluid at an OD index cutoff value of 1.5 has excellent sensitivity and specificity to assist clinical decision-making in confirming or excluding a diagnosis of IA when results are interpreted with clinical findings.

Crit Review Microbiol, 41(1):124-34 (2015)

Galactomannan and PCR versus culture and histology for directing use of antifungal treatment for invasive aspergillosis in high-risk haematology patients: a randomised controlled trial

C Orla Morrissey, Sharon C-A Chen, Tania C Sorrell, Samuel Milliken, Peter G Bardy, Kenneth F Bradstock, Jeffrey Szer, Catriona L Halliday, Nicole M Gilroy, John Moore, Anthony P Schwarer, Stephen Guy, Ashish Bajel, Adrian R Tramontana, Timothy Spelman, Monica A Slavin, for the Australasian Leukaemia Lymphoma Group and the Australia and New Zealand Mycology Interest Group


Figure 3: Integrated antifungal strategies for patients at risk of invasive fungal disease

J Antimicrob Chemother doi:10.1093/jac/dks208

Therapy with antifungals decreases the diagnostic performance of PCR for diagnosing invasive aspergillosis in bronchoalveolar lavage samples of patients with haematological malignancies

Mark Reinwald¹*†, Margit Hummel¹†, Elena Kovalevskaya¹, Birgit Spiess¹, Werner J. Heinz², Jörg Janne Vehreschild³, Beate Schultheis⁴, Stefan W. Krause⁵, Bernd Claus⁶, Thomas Suedhoff⁷, Rainer Schwerdtfeger⁸, Stefan Reuter⁹, Michael G. Kiehl¹⁰, Wolf-Karsten Hofmann¹ and Dieter Buchheidt¹

Figure 1. Sensitivity values relative to the number of antifungals given prior to BAL sampling. Mean and standard error of the mean; *P* values calculated using the Mann–Whitney *U*-test.

226 BAL samples
 nested Aspergillus PCR assay
 sensitivity of : 0.69 specificity: 0.87 (for pts without antifungal treatment prior to BAL sampling)

Diagnosis of invasive fungal infections in hematological patients by combined use of galactomannan, 1,3-beta-Dglucan, *Aspergillus* PCR, multifungal DNA-microarray and *Aspergillus* azole resistance PCRs in blood and bronchoalveolar lavage samples – results of a prospective multicenter study

T. Boch, B. Spiess, O.A. Cornely, J.J. Vehreschild, P.M. Rath, J. Steinmann, W.J. Heinz, J. Hahn, S.W. Krause, M.G. Kiehl, G. Egerer, T. Liebregts, M. Koldehoff, M. Klein, F. Nolte, M.C. Mueller, N. Merker, S. Will, M. Mossner, H. Popp, W.-K. Hofmann, M. Reinwald, D. Buchheidt

OBJECTIVES:

... defining the optimal use of biomarkers and clinical samples.

METHODS:

Concurrent bronchoalveolar lavage (BAL) and peripheral blood samples of 99 hematological patients with suspected IFD were investigated within a multicenter prospective study.


RESULTS:

. . .

IFD were classified as proven (n=3), probable (n=34), possible (n=33), and no IFD (n=29).

The combination of GM (BAL) with BDG (blood) showed sensitivity/specificity of 92%/93%.

Combining GM (BAL) with PCR (BAL) showed sensitivity/specificity of 85%/97%.

Combination of biomarkers is superior to their sole use in diagnosing IFD, particularly IPA, in hematological high risk pts. Integrating blood and BAL samples into a diagnostic algorithm is an advantageous approach.